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Abstract— Social navigation is a critical element in facilitat-
ing robots’ transition to human spaces. The task of accurately
predicting human motion is non-trivial and is compounded by
the variability of human motion and the presence of multiple
humans in proximity. To address some of the open challenges
in pose prediction to facilitate social navigation, in this work,
we present a novel sequence learning algorithm that models
past human motion using a flexible discrete latent space. Our
algorithm introduces the concept of Vector Quantization for
human motion, enabling the learning of a discrete latent space
without being restricted by any static prior. In addition, we
propose a new objective function that uses the discriminator
objective to penalize deviation of predicted motion from the
ground-truth. Finally, to explicitly account for interactions
among multiple humans, we incorporate a lightweight attention
mechanism that conditions per-agent predictions on the prior
hidden states of all agents. Our evaluation in multi-agent
scenarios suggest the efficacy of our approach over state-of-
the-art approaches, resulting in more feasible human poses that
align better with the ground-truth.

I. INTRODUCTION

Robots that can operate alongside humans in settings
designed for human-centric activities represent a departure
from traditional industrial robots, which typically functioned
in isolation within enclosed spaces [1]–[3]. Human inter-
actions, such as navigating crowded areas, handing over
or exchanging objects, are heavily reliant on the ability
to observe and anticipate the actions of others [4]–[8]. In
line with this, for robots to function safely and effectively
in the presence of humans, they must continually monitor,
predict, and adapt to changes in their environment, especially
concerning the movements and intentions of nearby humans
[9]–[13]. Despite substantial progress in robot perception,
enabling them to detect changes and adjust to new environ-
mental conditions [14]–[17], the ability to reliably predict
alterations in environmental dynamics remains an ongoing
and significant challenge.

The concept of anticipation has received extensive atten-
tion within the field of robotics, particularly in the realm
of social navigation. The primary goal in this context is to
navigate safely in the presence of humans, thus avoiding
any potential interference [18]–[22]. Additionally, previous
research has delved into anticipatory planning of robot
actions based on inferred goals [23]–[28]. However, as robots
are expected to interact with humans over prolonged periods,
there is a need to anticipate human motion at a higher spatial
and temporal granularity [29]–[33]. This involves predicting
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Fig. 1: Qualitative evaluation of the predicted motion of our
approaach and the next best performing model, Scalable +
Interpretable [34]. Our approach uses a flexible discrete latent
space and introduces a discriminator objective, which results
in predictions which are closer to the ground-truth.

future human motion conditioned on past motion (Fig. 1), en-
abling the robot to plan around the human without disrupting
their natural flow. However, achieving accurate predictions of
human motion remains challenging due to the intricate and
socially influenced nature of human behavior [34], [35].

Previous research has approached the task of predicting
future motion as a sequence learning problem to account
for the irregular and stochastic nature of human movement
[20], [36]–[40]. These methods aim to derive a unified repre-
sentation from training data that can generalize to test data.
In training these networks, the central assumption typically
revolves around either learning a distribution capable of fit-
ting a fixed prior [34], [41]–[43] or learning a point estimate
based on past observed data, which is then used to predict
future human motion [44]–[46]. Learning a static prior
introduces an auxiliary objective that acts as a regularizer,
which requires careful tuning. On the other hand, learning
a point estimate tends to yield less robust representations.
Furthermore, majority of prior works have relied only on
the reconstruction error for training these networks. Such an
objective function may cause the predictions to regress to the
mean and, as such, may not be able to capture the spatial
and temporal correlations in human motion.

To address the above challenges, we present a novel
approach that aims to close two critical gaps in human pose
forecasting: 1) learning a robust representation of the past
motion and 2) improving temporal and spatial correlation
in the prediction. Our proposed framework extends the
encoder-decoder model by incorporating codebook learning
and distribution matching. Leveraging codebooks enables



our approach to acquire discrete representations of observed
motion data. Additionally, given that pose prediction involves
complex data dependencies, conventional mean squared error
(MSE)-based objectives become problematic. Therefore, we
introduce a novel loss function based on a discriminator
to promote temporal and spatial consistency by penalizing
predictions that diverge from the ground-truth distribution.

We conducted a comprehensive series of experiments to
assess the effectiveness of our approach in various multi-
agent pose prediction scenarios using the NTU RGB+D
60 dataset [47]. The results underscore effectiveness of our
approach in addressing the open challenges in pose predic-
tion, as it consistently outperformed all evaluated algorithms
achieving the lowest prediction error at various temporal
horizons, both in quantitative and qualitative terms. For
an in-depth discussion of our methodology and extensive
experimental analyses, we encourage the reader to refer to
the complete version of this paper [48].

II. RELATED WORKS

Human trajectory prediction poses a significant challenge,
mainly because the policies of the agents involved are not
directly observable. Various data-driven approaches have
been applied to address the prediction of intricate interactions
in social navigation [36], [37], [49], autonomous vehicle op-
erations [38], [39], [50], and human-robot interaction (HRI)
scenarios [2], [51]. Alahi et al. [36] introduced Social-LSTM,
which employs agent-specific Long Short-Term Memory
(LSTM) networks to summarize the past observations of
each agent. The hidden states of neighboring LSTMs are
interconnected using a social pooling strategy, and this
collective information serves as input to the LSTM cell at
the subsequent time step. Gupta et al. [37] presented Social
GAN, which introduced an efficient pooling mechanism
comprising a Multi-Layer Perceptron (MLP) followed by
max pooling to address the challenge of human trajectory
prediction.

While previous research in trajectory forecasting and pose
prediction has made significant strides in advancing the
state-of-the-art, the generation of human motion that is both
feasible and temporally coherent remains a challenging and
open research problem [34], [44], [45], [52]. Furthermore,
unlike some other domains of machine intelligence, such as
computer vision or machine translation, there is no widely
accepted consensus on the optimal framework for capturing
the spatial and temporal dynamics of human motion. Al-
though recent approaches have adopted an encoder-decoder
framework, the task of learning a robust representation within
the encoder that effectively encapsulates past human motion
is an ongoing research endeavor. Additionally, while there
are advantages to learning a distribution over past observed
motion, the identification of a prior that can accurately model
this distribution remains a challenging task. This challenge
leads to difficulties in optimization, which necessitates the
reconciliation of both reconstruction and distribution match-
ing aspects.

III. PROBLEM FORMULATION

Our objective is to improve the robot’s perception by
providing it with the capability to forecast the motion of
all human in the scene. Human pose prediction is formally
described as the task of predicting the future human motion
for a certain period, given their past motion.

We assume that the number of agents in the scene, denoted
by K, is known beforehand. The input to the model consists
of the observed motion of all agents in the scene from time
t = 1 to τ : X = {X1, . . . , XK} = {x1:K

1 , x1:K
2 , . . . , x1:K

τ }.
The model aims to predict the future trajectory frames over
horizon H: Y = {Y 1, . . . , Y K} = {y1:Kτ+1, y

1:K
τ+2, . . . , y

1:K
τ+H}.

We assume that the future human motion of each agent is
conditioned on the observed motion of all agents, and predict
each frame in an auto-regressive manner. Thus, the multi-
agent pose prediction problem is formulated as follows:

pθ(Ŷ
a
) =

τ+H∏
δ=τ+1

pθ(ŷ
a
δ |ŷaτ :δ−1, x

1:K
1:τ ); ∀a = 1, . . . ,K (1)

IV. PROPOSED METHOD

Here, we present our proposed framework, which has been
introduced in detail in [48]. Our approach comprises two
primary components: the encoder-decoder architecture with
discrete latent representation and the discriminator network
(see Fig. 2). The objective of the encoder-decoder architec-
ture is to predict future human motion. The discriminator
is tasked to distinguish frames that are coming from the
ground-truth distribution, from frames that are not, penal-
izing the latter. This creates a min-max game between the
two networks, which combine to provide more accurate pose
prediction. Our framework represents a unified framework
for predicting the motion in single, multi-agent, and human-
robot collaboration scenarios, with the main difference be-
tween the number of encoders and decoders, which scale
with the number of agents that require modeling.
Encoder: The encoder seeks to learn a salient representation
over the raw input space. The input to the encoder is the past
observed motion, represented in skeletal joint position, ve-
locity and acceleration. We use separate encoders to process
the position, velocity, and acceleration streams. The goal of
each encoder is to learn a spatio-temporal representation of
the observed motion data. The operations in the encoder can
be formulated as follows:

hs,t = Encoder(hs,t−1, xs,t, ϕs) (2)

here s represents position, velocity, or acceleration. Here,
xs,t represents the input to the Encoder at time t and will
take the value of xpos,t, xvel,t, xacc,t for position, velocity,
and acceleration at time t, respectively. hs,t−1 represents the
past hidden output at time t−1 and ϕs represents the stream-
specific encoder weights. The output from each encoder
is passed to a self-attention module [53]. The attention
module is tasked to sparsely and adaptively extract the salient
features from the three streams.

ht = Concat(hpos,t, hvel,t, hacc,t); zt = Att(ht,ϕatt) (3)
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Fig. 2: Vector-Quantized Generative Adversarial Network for Motion Prediction [48]. The primaray objective of the encoder-
decoder framework is to generate future human motion, using a discrete latent codebook. This codebook offers a dynamic
prior, which adapts through learning. The discriminator is designed to differentiate between the ground-truth distribution
and the predictions generated by the decoder.

where ϕatt represents weights of the attention module. In
the self-attention module, we first linearly project the con-
catenated output ht into a separate query (Q), key (K), and
value (V ) embeddings for each head. These embeddings are
then used to calculate attention weights using the scaled-
dot product softmax (sf) approach. The functions for each
head in the multi-head self-attention module are defined as
follows:

Q = htW
Q; K = htW

K ;V = htW
V

Att(Q,K, V ) = sf

(
QKT

√
dk

)
V

(4)

where, WQ,WK ,WV represent the linear projection
weights and 1√

dk
is the scaling factor for calculating the

attention weights. The output of the attention module is
passed to the discrete codebook to obtain the latent space.
Latent codebook: We propose the use of a codebook for
calculating the latent space, similar to the Vector Quantiza-
tion approach in VQ-VAE [54], which has been successfully
applied for image synthesis. Compared to previous methods
in pose prediction [34], [41], [43], [55], which have relied
on variational bottlenecks or discriminators to impose a
fixed prior, our proposed method involves the adoption of
a flexible prior that evolves dynamically throughout the
training process. This approach offers the advantage of not
constraining the learning process by regularizing the latent
space to adhere to a static distribution, thereby reducing the
risk of mode collapse.

We introduce the latent embedding as a codebook, denoted
as e ∈ RL×M , where L represents the size of the categorical
latent space, and M signifies the dimension of each individ-
ual categorical embedding vector ei. To compute the discrete
latent space, we employ the encoder’s output and determine
the nearest neighbors in the shared embedding space e.
Consequently, the latent space z can be conceptualized as
a posterior categorical distribution, denoted as q(z|x), where
the probabilities associated with the categorical vector are
one-hot and defined as follows:

q(z = k|x) =

{
1 for k = argminj ||z − ej ||2,
0 otherwise,

(5)

where, z(x) is the output of the encoder network, ej
represents a vector from the codebook e.
Decoder: To predict the current motion, we employ an
auto-regressive decoder that relies on the information from
previous time steps. This decoder exclusively generates the
positions of the skeleton joints. It is fed with two inputs:
a discrete embedding vector ek that encapsulates past mo-
tion observations and the most recent predicted frame. The
latter is processed by a Keyless attention module [56].
This attention module computes the weights that reflect the
relationship between the immediate past output and the latent
representation of the observed motion. The operations within
the decoder are formulated as follows:

pt = Concat(zt, hdec,t−1); patt,t = Att(pt, ϕatt)

St = Decoder(St−1, patt,t, ϕpos);
(6)

where, the latent representation is denoted as zt, while
hdec,t−1 represents the previous hidden output of the De-
coder. The output of the attention mechanism in the decoder
is denoted by patt,t, which is passed along with the previous
Decoder output St−1 to the Decoder. ϕatt and ϕpos denote
the weights of the attention module and the decoder network,
respectively.
Discriminator: The discriminator consists of a separate
encoder and is tasked with distinguishing between samples
originating from the ground-truth distribution and those
generated by the decoder. To achieve this, the discriminator
receives two inputs: the ground-truth data denoted as Treal =
Y , and the predicted motion Tfake = Ŷ , classifying them as
either real or fake. The inputs are passed through an encoder,
similar to Eq .2. The encoder’s output is passed to the linear
layer to obtain the classification results.
Overall objective function: In our approach, there are two
distinct modules that are trained in opposition to each other,
following the min-max setup in GANs [57]: the encoder-
decoder architecture and the discriminator. As such, the over-
all training procedure can be summarized by the following
objective function:

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] +

Ez∼p(z)[log(1−D(G(z)))]
(7)



where G represents the encoder-decoder architecture and
D denotes the discriminator network. Furthermore, as we
use a discrete codebook for representing the latent space,
there are additional terms in the objective for the encoder-
decoder architecture, which reflects the vector quantization
algorithm that is used to learn the discrete representation,
along with additional commitment loss to ensure that the
encoder commits to an embedding, instead of arbitrarily
growing in embedding space. The objective function can be
defined as follows:

L = log p(y|z(x)) + ||z(x)− e||22 + β||ze(x)− sg[e]||22
(8)

where, the first term is the reconstruction loss. sg rep-
resents a stop-gradient operator that prevents the flow of
gradient through the codebook. The second term is the
nearest-neighbor embedding loss for selecting the embedding
vector from the codebook. The third term is the commitment
cost, ensuring the encoder commits to a specific embedding.

V. EXPERIMENTAL SETUP
A. Datasets

Here, we present the experimental evaluation of our ap-
proach on the NTU RGB+D 60 dataset [47]. We focused
on 11 joint actions that involve more than one agent. We
followed the cross-subject evaluation scheme and used 20
subjects for training and validation and another 20 for testing.
We used the skeleton modality and all the provided joints of
each agent for pose prediction, as prior work has shown that
using RGB data only provides marginal improvements due to
the constrained environmental setup in which the data were
collected [46].
B. State-of-the-art methods and baselines

To evaluate the performance of our approach, we com-
pared against several state-of-the-art models: Joint Learning
[46], Joint Learning + Social [46], Joint Learning + Social
+ Context [46], and Scalable + Interpretable [34]. The Joint
Learning architecture is based on a sequence-to-sequence
architecture and operate under the assumption that agents
do not interact, thus predicting the motion of each agent
independently. However, the Joint Learning + Social method
introduces a permutation-invariant pooling mechanism for
aggregating social features across all agents, while the Joint
Learning + Social + Context method incorporates an addi-
tional spatio-temporal context Convolutional Neural Network
(CNN) module to extract RGB features from the scene. The
Scalable + Interpretable method presents an encoder-decoder
framework with adversarial regularization on the latent space,
featuring an attention module for disentangling and extract-
ing multi-agent features. To ensure a fair comparison, we
fine-tuned hyperparameters for all the models.

C. Evaluation Metric

We evaluated the performance of all models using the
Mean Squared Error (MSE), which is the l2 distance between
the ground-truth and predicted poses at each timestep, aver-
aged over the number of joints and sequence length, similar

TABLE I: MSE (in cm2) comparison of different multi-agent
methods on the NTU-RGBD 60 Dataset (Lower is better).

Approaches Frames
2 4 8 10 13 15

Joint Learning [46] 9.68 15.84 29.88 37.52 49.55 57.93
Joint Learning + Social [46] 9.71 15.97 30.36 38.69 51.68 59.38

Joint Learning + Social + Context [46] 9.78 16.02 30.46 38.39 50.91 59.63
Scalable + Interpretable [34] 9.66 15.66 29.05 36.16 47.20 54.84

Our Approach 9.65 15.48 28.57 35.64 46.71 54.39

to prior work [41], [45], [46], [55]. The MSE is calculated as:

L(X , X̂ ) =
1

H ×K

H∑
t=1

D∑
i=1

(xt,i − x̂t,i)
2 (9)

where, H and D are the total number of frame and joints
respectively. The MSE jointly encodes global body motion
and skeletal movements [46], making it an ideal metric.

VI. RESULTS AND DISCUSSION

Results: We report the results of all evaluated models for
multi-agent pose prediction scenarios on the NTU-RGB+D
60 [47] datasets. We report the results in distinct frame
intervals instead of seconds, similar to [34] to circumvent
the problem of frame drops during data collection and sub-
sequent evaluation. We use these frame intervals to evaluate
the models’ performance across short-term horizons (2 & 4
frames), mid-term horizons (8 & 10 frames), and long-term
horizons (13 & 15 frames). The results in Tab. I suggest that
our approach outperformed all other methods across all the
evaluated horizons.
Discussion: Our approach consistently outperformed all
evaluated models across all intervals, demonstrating superior
representation learning and sequence modeling for multi-
agent scenarios. One key factor in its success is its ability to
model interaction dynamics within the decoder by calculating
attention weights across all agents’ hidden states. Unlike pre-
vious methods, our approach explicitly conditions predictions
on both the past hidden states and latent states of all agents.
Additionally, the use of a discriminator loss encourages more
accurate trajectory generation. Our framework’s Keyless At-
tention mechanism in the decoder effectively models inter-
actions without adding computational complexity compared
to traditional self-attention mechanisms.

For robots to co-exist with humans, they need to anticipate
the pose and trajectory of their human counterparts. In
this work, we introduce a novel mechanism that focused
on predicting pose, which investigated human motion at a
greater spatial granularity compared to trajectory forecasting.
To tackle the issue of learning a robust representation of past
observed poses, we proposed the use of vector quantization
to learn a discrete latent space, with no restrictions of a static
prior. Additionally, we proposed using the discriminator loss
to compliment the MSE objective to improve the accuracy
of pose prediction, As both pose prediction and trajectory
forecasting have similar sequence learning challenges, our
findings can generalize to trajectory forecasting and social
navigation. Moreover, in close-proximity collaboration where
anticipating human pose is crucial, our approach can be in-
corporated in robot’s perception, to allow accurate planning.
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[4] Z. Wang, K. Mülling, M. P. Deisenroth, H. Ben Amor, D. Vogt,
B. Schölkopf, and J. Peters, “Probabilistic movement modeling for
intention inference in human–robot interaction,” IJRR, 2013.

[5] A. M. Williams, P. Ward, J. M. Knowles, and N. J. Smeeton, “Antic-
ipation skill in a real-world task: measurement, training, and transfer
in tennis.” Journal of Experimental Psychology: Applied, 2002.

[6] M. Vázquez, E. J. Carter, B. McDorman, J. Forlizzi, A. Steinfeld, and
S. E. Hudson, “Towards robot autonomy in group conversations: Un-
derstanding the effects of body orientation and gaze,” in Proceedings
of the 2017 ACM/IEEE International Conference on Human-Robot
Interaction, 2017, pp. 42–52.

[7] M. Fiore, A. Clodic, and R. Alami, “On planning and task
achievement modalities for human-robot collaboration,” in Experi-
mental Robotics: The 14th International Symposium on Experimental
Robotics. Springer, 2016, pp. 293–306.

[8] A. Clodic, E. Pacherie, R. Alami, and R. Chatila, “Key elements
for human-robot joint action,” Sociality and normativity for robots:
philosophical inquiries into human-robot interactions, pp. 159–177,
2017.

[9] M. M. Islam and T. Iqbal, “MuMu: Cooperative multitask learning-
based guided multimodal fusion,” in AAAI, 2022.

[10] C. Finn, A. Rajeswaran, S. Kakade, and S. Levine, “Online meta-
learning,” in ICML, 2019.

[11] M. S. Yasar and T. Iqbal, “Robots that can anticipate and learn in
human-robot teams,” in ACM/IEEE HRI, 2022.

[12] A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila,
and K. O. Arras, “Human motion trajectory prediction: A survey,”
IJRR, 2020.

[13] M. S. Yasar and T. Iqbal, “Coral: Continual representation learning
for overcoming catastrophic forgetting,” AAMAS, 2023.

[14] T. Iqbal and L. D. Riek, “Human robot teaming: Approaches from
joint action and dynamical systems,” Humanoid Robotics: A Reference,
Springer, 2017.

[15] M. M. Islam and T. Iqbal, “Multi-gat: A graphical attention-based
hierarchical multimodal representation learning approach for human
activity recognition,” in IEEE RA-L, 2021.

[16] M. M. Islam, M. S. Yasar, and T. Iqbal, “Maven: A memory augmented
recurrent approach for multimodal fusion,” IEEE Trans. Multimedia,
2022.

[17] M. M. Islam and T. Iqbal, “Hamlet: A hierarchical multimodal
attention-based human activity recognition algorithm,” in IROS, 2020.

[18] J. Mainprice and D. Berenson, “Human-robot collaborative manipu-
lation planning using early prediction of human motion,” in IROS.
IEEE, 2013.

[19] L. Sanneman, C. Fourie, J. A. Shah et al., “The state of industrial
robotics: Emerging technologies, challenges, and key research direc-
tions,” Foundations and Trends® in Robotics, 2021.

[20] C. I. Mavrogiannis and R. A. Knepper, “Decentralized multi-agent
navigation planning with braids,” in Algorithmic foundations of
robotics XII. Springer, 2020, pp. 880–895.

[21] C. Mavrogiannis, K. Balasubramanian, S. Poddar, A. Gandra, and
S. S. Srinivasa, “Winding through: Crowd navigation via topological
invariance,” IEEE Robotics and Automation Letters, vol. 8, no. 1, pp.
121–128, 2022.

[22] C. I. Mavrogiannis, V. Blukis, and R. A. Knepper, “Socially competent
navigation planning by deep learning of multi-agent path topologies,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2017, pp. 6817–6824.

[23] G. Hoffman and C. Breazeal, “Effects of anticipatory action on
human-robot teamwork efficiency, fluency, and perception of team,”
in ACM/IEEE HRI, 2007, pp. 1–8.

[24] T. Iqbal, S. Li, C. Fourie, B. Hayes, and J. A. Shah, “Fast online
segmentation of activities from partial trajectories,” in ICRA, 2019.

[25] P. A. Lasota, G. F. Rossano, and J. A. Shah, “Toward safe close-
proximity human-robot interaction with standard industrial robots,” in
2014 IEEE (CASE), pp. 339–344.

[26] R. Freedman and S. Zilberstein, “Integration of planning with recog-
nition for responsive interaction using classical planners,” in AAAI,
2017.

[27] E. Renaudo, S. Devin, B. Girard, R. Chatila, R. Alami, M. Khamassi,
and A. Clodic, “Learning to interact with humans using goal-directed
and habitual behaviors,” in Ro-Man 2015, Workshop on Learning for
Human-Robot Collaboration, 2015.

[28] A. Pokle, R. Martı́n-Martı́n, P. Goebel, V. Chow, H. M. Ewald,
J. Yang, Z. Wang, A. Sadeghian, D. Sadigh, S. Savarese et al., “Deep
local trajectory replanning and control for robot navigation,” in 2019
international conference on robotics and automation (ICRA). IEEE,
2019, pp. 5815–5822.

[29] M. S. Yasar and T. Iqbal, “Improving human motion prediction through
continual learning,” ACM/IEEE Int. Conf. on Human-Robot Interaction
(HRI), LEAP-HRI Workshop, 2021.

[30] G. Hoffman, “Evaluating fluency in human–robot collaboration,” IEEE
THMS, 2019.

[31] T. Iqbal and L. D. Riek, “Coordination dynamics in multi-human
multi-robot teams,” IEEE RA-L, 2017.

[32] T. Iqbal, S. Rack, and L. D. Riek, “Movement coordination in human-
robot teams: A dynamical systems approach,” IEEE T-RO, 2016.

[33] T. Iqbal and L. D. Riek, “Temporal anticipation and adaptation
methods for fluent human-robot teaming,” in IEEE ICRA, 2021.

[34] M. S. Yasar and T. Iqbal, “A scalable approach to predict multi-agent
motion for human-robot collaboration,” in IEEE RA-L, 2021.

[35] T. Iqbal, M. J. Gonzales, and L. D. Riek, “Joint action perception to
enable fluent human-robot teamwork,” in 2015 IEEE ROMAN.

[36] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in IEEE CVPR, 2016.

[37] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social
gan: Socially acceptable trajectories with generative adversarial net-
works,” in IEEE CVPR, 2018.

[38] E. Schmerling, K. Leung, W. Vollprecht, and M. Pavone, “Multimodal
probabilistic model-based planning for human-robot interaction,” in
IEEE ICRA, 2018.

[39] S. H. Park, G. Lee, M. Bhat, J. Seo, M. Kang, J. Francis, A. R. Jadhav,
P. P. Liang, and L.-P. Morency, “Diverse and admissible trajectory
forecasting through multimodal context understanding,” ECCV, 2020.

[40] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Tra-
jectron++: Dynamically-feasible trajectory forecasting with heteroge-
neous data,” in European Conference on Computer Vision. Springer,
2020, pp. 683–700.
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